The most common way to artificially produce hydrogen is through a process called steam-methane reforming, or ‘grey hydrogen’. This process generates carbon gas, none of which is captured, and it makes up 96% of the hydrogen industry. Carbon-based production using coal instead of methane produces similar results; however, this is a dirtier method and is known as black or brown hydrogen.
A lower-carbon alternative is blue hydrogen, which captures and stores the carbon produced in stream reforming. Blue hydrogen is sometimes referred to as carbon neutral; however, some argue that ‘low carbon’ is a more accurate description, as 10–20% of net carbon is released during the carbon capture and storage process.
Green hydrogen is a far cleaner option and is created through electrolysis using renewable energy sources, such as solar or wind power. It currently makes up about 1% of all hydrogen production but is expected to grow as the cost of renewable energy falls each year.
Around 3 in 4 UK households are connected to the gas grid. To reach net zero, the UK needs to reduce the average household’s annual carbon emissions from nearly 3 tonnes to just 135kg by 2050 – a drop of 95%. In 2021 the UK government published its Ten Point Plan for a Green Industrial Revolution, which included plans to create 5GW of low-carbon hydrogen by 2030 and steps to allow 20% of blue hydrogen to be blended into the grid for all homes by 2023 – this deadline has now been extended to 2025. This investment has been met with criticism, with many deeming it ‘techcrastination’.
Additionally, converting a gas grid into a hydrogen one is not as easy as simply funnelling a new gas through existing pipes. Hydrogen is a volatile gas which can degrade older pipes and leak in newer ones, but investment into rectifying and mitigating these risks undermines climate progress. As numerous studies have concluded, rapid electrification of buildings and retrofits to improve efficiency are critical this decade to meet the 2050 net zero target. Techcrastination around hydrogen is therefore a hindrance to progress, rather than a solution.
It’s unclear whether hydrogen is required to decarbonise our buildings by 2050, and there’s currently too much technological uncertainty to scale it up in time. While the UK government is currently focused on blue hydrogen and ‘hydrogen blending’ solutions, current infrastructure can only safely blend hydrogen with natural gas at a rate of up to 20%. It would therefore take additional time and resources to upscale these processes, and this could cause more delays in achieving net zero by 2050.